High-Resolution ADC Using Delta-Sigma Architectures

sddec18-20 <u>http://sddec18-20.sd.ece.iastate.edu</u> Advisor: Professor Randall Geiger Clients: Professor Randall Geiger and Professor Degang Chen

Problem and Intended Use

Problem

Design a Delta-Sigma Analog to Digital Converter that reads an analog signal from an on-chip temperature sensor and converts it into a digital output

□ Used in many circuits

- Physical data is normally characterized as an analog signal, converting it to a digital signal allows the signal to be easily manipulated
- □ Normally at the front end of most digital circuits

Analog to Digital Converters

- ADCs allow electronics to interact with the analog world around us
- Nyquist Rate ADCs
 - Samples the input signal at the Nyquist Rate
 - □ Successive approximation
 - 🗆 Flash
- Oversampling ADCs
 - Samples the input signal at a frequency significantly higher that the Nyquist rate
 - Delta Sigma

4

Why Delta Sigma

- Oversampling
 - Higher oversampling ratio leads to higher signal to noise ratio
 - Higher oversampling ratio leads to higher resolution
- □ Linear System
 - □ Linearity depends on a 1-bit DAC

Requirements and User Interface

- □ Requirements
 - Functional
 - □ Temperature range of sensor from 10°C to 60°C
 - □ New output code every 10ms
 - □ 10-bit output
 - Designed in TSMC 180nm process
 - Non-functional
 - □ Must fit inside a die of 4mmX4mm
 - □ User Interface
 - IC designers integrate them in IC designs, both in the academic world and in industry

Delta-Sigma ADC and On-Chip Temperature Sensor

sddec18-20 High Resolution ADC Using Delta-Sigma Architectures

Operating Environment and Familiarity with tools

Operating Environment

- □ It can be implemented into any integrated circuit
- There will be a pin out between the modulator and the temperature sensor, this will allow us to test any analog signal

□ Familiarity

- □ Simulations performed in Cadence
 - All members of our team have taken classes, and participated in projects, involving integrated circuits and analog VLSI design

Project Management

□ Resources

□ Access to:

- □ Cadence
- □ Fabrication through MOSIS
- □ TSMC 180nm Process Design Kit (PDK)
- Pad Frame compliant with the process
- Oven
- □ Electrolytic bath
- DAQ (Digital Acquisition) measurement device
- □ Work method: divide work into circuits
- □ Risks
 - Nobody on team has designed a data converter prior to the project
 - Time and legal constraints involved with fabrication

System Design Blocks

sddec18-20 High Resolution ADC Using Delta-Sigma Architectures

- A diode has a current that is dependent on its temperature
- The sensor takes advantage of this to produce a voltage proportional to the chip's temperature

Clock

- System clock is produced by a ring oscillator
- This is used to produce 4 clock signals with various phases and duty cycles (nominally 100 KHz)

- Converts an input voltage to a binary bit stream
- Bit stream's ratio of ones to zeros is proportional to the input voltage

- Generates a saw-tooth wave that progresses in a positive or negative direction depending on the sign of the input voltage
- The slope of this progression depends on the magnitude of the input voltage

Dynamic Comparator

 Converts integrator's saw-tooth wave to binary bit stream by comparing its magnitude with a reference voltage at a clock edge

DAC

• Converts output bit stream to analog signal applied to integrator to control the direction of the saw-tooth wave's progression

Switched Capacitors

Non-Inverting

Inverting

- Controls current by incrementally transferring charge using a capacitor and clock
- Allows implementation of a large resistor using a small capacitor, saving circuit area

sddec18-20 High Resolution ADC Using Delta-Sigma Architectures

• Converts bit stream from modulator's output to 10-bit parallel output codes by summing every 1024 bits

180nm Test Results

Overall Results

Input Voltage (mV)	First Code	Second Code	Expected Code
730.068359375	3	2	1
752.5	257	256	256
765V	512	512	512
782.5	767	767	768
799.931640625	1023	1023	1023

The desired output is a 10-bit code on 10 parallel output pins, whose magnitude is proportional to the proportion of the input values that are high in a 10ms timespan. A new code should be output every 10ms.

UMC 65nm Design

sddec18-20 High Resolution ADC Using Delta-Sigma Architectures

21

Delta-Sigma ADC 65nm Design

22

65nm Modulator Results

Final Results

65nm Modulator Layout

sddec18-20 High Resolution ADC Using Delta-Sigma Architectures

Final Layout of 65nm Design

sddec18-20 High Resolution ADC Using Delta-Sigma Architectures

Post-Fabrication Testing

- Post-fabrication testing will define the performance and characteristics parameters of the ADC
- Design of a PCB (Printed Circuit Board) has been implemented to take data off-chip and create test points along the modulator
- A DAQ (Data Acquisition) Device from MCC will provide us the ability to acquire data from the ADC and obtain characteristic data

Characteristic Testing

- The SNR (Signal-to-Noise Ratio), SNDR (Signal-to-Noise and Distortion Ratio), and ENOB (Effective Number of Bits) characterizes the performance of the ADC
- These will provide accuracy and characteristic information about our device
- To test these values we will use a Matlab script to post-process in conjunction with our DAQ to acquire data
- The Matlab script also allows for further characterization parameters if need be

Behavioral Testing

- Measurements that exhibit the behavior of the ADC:
 - □ The time it takes for an output code to arrive given a particular input
 - $\hfill\square$ The rate at which the design is capable of operating
 - \square Power consumption of the ADC
- These values help us ensure the design meets original requirements

Next Semester and Lessons Learned

- Two members of the team who will be here next semester will carry out testing of the fabricated chip
- Once the device is returned from fabrication will need to be packaged, currently looking at a ZIF (zero insertion force) package
- A PCB will be used for testing the device with direct test points and proper input signals.
- Transitioning from one process to another is a valuable skill to use in industry

Thank you!

Caroline Alva Tyler Archer Caleb Davidson Mahmoud Gshash Josh Rolles

Final Layout of 180nm Design

sddec18-20 High Resolution ADC Using Delta-Sigma Architectures

31

180nm Modulator Layout

sddec18-20 High Resolution ADC Using Delta-Sigma Architectures

33

Clock outputs

Temperature Sensor Output

Integrator Output

35

Dynamic Comparator

Counter-based Decimator Verilog

```
58
59
      //start the actual connection of the various components for the main top module
60
61
      Register reg1(.reset(r), .resCnt(~resCnt), .clk(clk3), .indata(regin), .outdata(regout));
62
63
      updowncount bookcount1(.Clock(clk1), .L(countr), .E(Vin), .up down(1'b1), .Q(bookout1));
64
65
      updowncount bookcount2(.Clock(clk2), .L(countr), .E(1'b1), .up_down(1'b1), .Q(bookout2));
66
67
     always @(*) begin
68
          countr <= resCnt & r;
69
     end
    always @(posedge clk3) begin
71
          if(bookout2 == 10'b111111111) begin
72
             resCnt <= 1'b0;</pre>
73
          end
74
          else begin
75
             resCnt <= 1'b1;
76
          end
          regin <= bookout1;</pre>
78
          parout <= regout;</pre>
79
     end
80
      endmodule
81
```

```
// Author: Caleb Davidson
      // Date: 03/22/2018
      // Description: Main file for sddec18-20
     // Delta-Sigma ADC filtration modules
 6
    //main module that make the connects between all the other modules
     L//`timescale 1ns/1ps
      module main(Vin,r,clk1,clk2,clk3,parout);
          parameter resVal = 1023;
          input Vin;
          input r;
12
          input clk1,clk2,clk3;
13
          output reg [9:0] parout;
14
          reg resCnt;
15
          reg [9:0] regin;
16
          reg countr;
          wire [9:0] regout, bookout1, bookout2;
18
19
20 E//File: updowncount.v
     //modified from 281 textbook
21
      module updowncount (Clock, L, E, up down, Q);
24
    //parameter n = 8;
25
        //input [9:0] R;
26
        input Clock, L, E, up_down;
27
        output [9:0] Q;
28
        reg [9:0] Q;
29
        integer direction;
30
        always @ (posedge Clock)
31
       begin
          if (up down)
            direction <= 1;
34
          else
            direction \leq -1;
36
          if (!L)
            //Q <= R;
            Q <= 10'b000000000;
39
          else if (E)
40
            Q \leq Q + direction;
41
          end
      endmodule
42
43
44
      // File: Register.v
45
      module Register(reset, resCnt, clk, indata, outdata);
46
        input reset, clk, resCnt;
47
        input [9:0] indata;
48
        output reg [9:0] outdata;
49
50
       always @(posedge clk) begin
51
          if(!reset)
             outdata <= 10'b000000000;
          else if (resCnt)
54
             outdata <= indata;
55
        end
56
57
      endmodule
```


Counter-based Decimator Schematic

	<u> </u>	<u></u>	· · · · · · · · · · · · · · · · · · ·
	<u> </u>	<u></u>	··┍╾┅╼╉═╍┲╧┉╼╧╤┅╸╸╴╴╴╴╴╴╴╴
	••••••••••••••••••••••••••••••••••••••	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · ·		╷╷┍╕╴╴╸╴╴╴╴╴╴╴
	• • • • • • • • • • • • <mark>•</mark> • • • • • •	<u> </u>	· · · · · · · · · · · · · · · · · · ·
		· <u>····</u> ·····	
		┿┿╍╌╴╴╴	
			<u> </u>
		• <u>•••</u> •••	· · · · · · · · · · · · · · · · · · ·
			· · · · · · · · · · · · · · · · · · ·
		· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·	<u></u>		<u> </u>
	· · · · · · · · · · · · · · · · · · ·	· <u>· · · · · ·</u> · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • •
	<u></u>		
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · <mark> <mark> </mark> · · · · · · · · · · · · · · · · · · ·</mark>	····	•••••••••••••••••••••••••••••••••••••••
· · · · · · · · · · · · · · · · · · ·	╡╴╴╸╸ ╝╴╸╸╸┥╢╴╏╸╺┍╸╴╝╶┍╸╴╴	─── ─────────────────────────────────	╶╹┍━╍╼━═╾╧╗╾╧╍╗┥╶╶╴╴╴╴╴╴╴
		الالالالالالالالالا فمحمد فعطالا	
···· <mark>⊢−−</mark> −−−−	<u> </u>	╈╋╤═╔╌╤═┉╌╤╦┰╷╎╷╷┍┲┲╌╧╗┑╧╦╔┑	
· · · · · · · · · · · · · · · · · · ·	·····	<mark>┢╾╬╍┶┯┯┙┙╴╸╸╸╸┙┙┥</mark> ┟┥ <mark>┟╴┝╴╸╸╸╸╸╸╸╸╸</mark> ┙╵	••••••••••••••••••••••••••••••••••••••
			· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·		<u> </u>
	· · · · · · · · · · · · · · · · · · · 		•••••••••••••••••••••••••••••••••••••••
· · · · · · · · · · · · · · · · · · ·	• <u>••••</u> •	· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • • •
	· · · · · · · · · · · · · · · · · · ·	 	
	<u>╺┽╸╸╺╶╸</u> ╝╴╸╸╸╸ <mark>╸</mark> ┝╉╼╼═╴╌ _{┲╝} ╌┢═╝┍┑╸╶	┢┝╪╤╔╌┯╔╍┶═╗┑╢╸╴╴╸╴╴╴╴╴╴	<u></u>
			•••••••••••••••••••••••••••••••••••••••
· · · · · · · · · · · · · · · · · · ·		• • • • • • • • • • • • • • • • • • •	<u> </u>
	<u>↓ · · · · · · · · · · · · · · · · · · ·</u>		·····
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	 	••••••••••••••••••••••••••••••••••••••
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • •	••••••••••••••••
<u></u>	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	••••••••••••••••••••••••••••••••••••••
• • • • • • • • • • • • • • • • • • • •		<u> </u>	· · · · · · · · · · · · · · · · · · ·
		· · · · · · · · · · · · · · · · · · ·	·····
· · · · · · · · · · · · · · · · · · ·			
		* ******	· · · · · · · · · · · · · · · · · · ·
• • • • • • • • • • • • • • • • • • • •		<u>• • • • • • • •</u> • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
	<u>+ • • • • • • • • • • • • • • • • • • •</u>	╏╺┶╼╗╍┶═╗┑╎╎╴╴╴╴╴╴╴╴	<u> </u>
			<u> </u>
· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·

Counter-based Decimator Verilog Layout

Initial Decimator Design Strategies

- Researched the theory and FIR filter structure that generally constructs the low pass and decimation filtration.
- Initial thought process was to build a design centered around summating impulse responses of the input signal, but this was soon found to be not an effective or efficient path to take.
- The Sinc filter of orders 1, 3, and 5 were considered as their frequency response fits the characteristics of the theory behind the decimator filter. Sinc filter of order 1 was considered due to its lessened difficulty to implement where we did not need the added complexity of orders 3 or 5.
- Even further the complexity of a Sinc order 1 filter proved to be more than needed in our output, and in order to design efficiently we chose a simpler counter-based structure for decimation. This provides less noise shaping effects than other structures.

Decimator Unit Testing

- Tested output when 50%, 75%, and 25% duty cycles. All outputs matched the input from an ideal input voltage, and for multiple output codes given the same input cycle.
- Tested high-frequency input with a 50% on, 50% off system, but where on is for one clock cycle and off is for one clock cycle.
- Modulator integration was tested with a full modulator input data. This led to accurate results with each of the above test cases for multiple output codes.

How the Decimator Integrates into the Design

- The Sigma component of the delta-sigma architecture is our 10-bit counter reading values from the modulator.
- Another counter acts as our summing interval.
- The register acts as a buffer holding one output code per 1024 inputs from the modulator.

Modulator Diagram

Figure 3. First-order $\Delta\Sigma$ modulator in the time domain

Overview Level Diagram with Averaging Filter Design

Sinc 3rd Order Example Filter Design

