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Problem and Intended Use

"1 Problem

1 Design a Delta-Sigma Analog to Digital Converter
that reads an analog signal from an on-chip
temperature sensor and converts it into a digital
output

1Used in many circuits

1 Physical data is normally characterized as an
analog signal, converting it to a digital signal
allows the signal to be easily manipulated

1 Normally at the front end of most digital circuits




Analog to Digital Converters

1 ADCs allow electronics to interact with the
analog world around us

1 Nyquist Rate ADCs

1 Samples the input signal at the Nyquist Rate
1 Successive approximation
1 Flash

1 Oversampling ADCs

1 Samples the input signal at a frequency
significantly higher that the Nyquist rate

1 Delta Sigma



Why Delta Sigma

1 Oversampling

1 Higher oversampling ratio leads to higher signal
to noise ratio

1 Higher oversampling ratio leads to higher
resolution

1 Linear System
1 Linearity depends on a 1-bit DAC



Requirements and User
Interface

1 Requirements

1 Functional
1 Temperature range of sensor from 10°C to 60°C
1 New output code every 10ms
1 10-bit output
1 Designed in TSMC 180nm process

1 Non-functional
1 Must fit inside a die of AmmX4mm

1 User Interface

1 1C designers integrate them in IC designs, both in the
academic world and in industry
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Delta-Sigma ADC and On-
Chip Temperature Sensor
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Operating Environment and
Familiarity with tools

1 Operating Environment
[ It can be implemented into any integrated circuit

[ There will be a pin out between the modulator and
the temperature sensor, this will allow us to test any
analog signal

O Familiarity
[ Simulations performed in Cadence

[ Allmembers of our team have taken classes, and
participated in projects, involving integrated
circuits and analog VLS| design
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Project Management

I Resources
] Access to:
1 Cadence
] Fabrication through MOSIS
1 TSMC 180nm Process Design Kit (PDK)
] Pad Frame compliant with the process
] Oven
] Electrolytic bath
1 DAQ (Digital Acquisition) measurement device
] Work method: divide work into circuits
] Risks

1 Nobody on team has designed a data
converter prior to the project

J Time and legal constraints involved with
fabrication
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System
Design
Blocks
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Temperature Sensor
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« A diode has a current that is dependent on its temperature
* The sensor takes advantage of this to produce a voltage proportional to the
chip’s temperature
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Ring Oscillator

« System clock is produced by a ring oscillator
* Thisis used to produce 4 clock signals with various phases
and duty cycles (nominally 100 KHz)
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Modulator

— INMtegrator —p=] 1-bit Quantizer

1<t DAC .

AXY Modulator

« Converts an input voltage to a binary bit stream
» Bit stream’s ratio of ones to zeros is proportional to the input voltage
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Integrator

Output Signal to 1-bit
(uantizer

Y

[mput From
Differencing Block

 Generates a saw-tooth wave that progresses in a positive or negative direction
depending on the sign of the input voltage
» The slope of this progression depends on the magnitude of the input voltage
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Dynamic Comparator
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Converts integrator’s saw-tooth wave to binary bit stream by

comparing its magnitude with a reference voltage at a clock
edge
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DAC

Analog Voltage
Output Binary Input Stream
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« Converts output bit stream to analog signal applied to integrator to
control the direction of the saw-tooth wave’s progression
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Switched Capacitors
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Non-Inverting Inverting

« Controls current by incrementally transferring charge using a capacitor
and clock
« Allows implementation of a large resistor using a small capacitor, saving
circuit area
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Decimator
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« Converts bit stream from modulator’s output to 10-bit parallel output
codes by summing every 1024 bits
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180nm
Test
Results
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Overall Results

Input Voltage (mV) | First Code | Second Code | Expected Code
730.068359375 3 : 1
7525 257 256 256
7605V 512 512 512
7825 767 767 768
799.931640625 1023 1023 1023

The desired output is a 10-bit code on 10 parallel output pins, whose
magnitude is proportional to the proportion of the input values that are
high in a 10ms timespan. A new code should be output every 10ms.
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UMC 65n
Design
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Delta-Sigma ADC 65nm
Design
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65nm Modulator Results

Integrated Output vs. Input Voltage
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Final Results

Output Error vs. Input Voltage
(Input Range = -200mV to 200mV)
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65nm Modulator Layout
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Final Layout of 65nm Design
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Post-Fabrication Testing

1 Post-fabrication testing will define the performance
and characteristics parameters of the ADC

1 Design of a PCB (Printed Circuit Board) has been
Implemented to take data off-chip and create test
points along the modulator

1 A DAQ (Data Acquisition) Device from MCC will
provide us the ability to acquire data from the ADC
and obtain characteristic data
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Characteristic Testing

1The SNR (Signal-to-Noise Ratio), SNDR (Signal-to-
Noise and Distortion Ratio), and ENOB (Effective
Number of Bits) characterizes the performance of
the ADC

1These will provide accuracy and characteristic
information about our device

1 To test these values we will use a Matlab script to
post-process in conjunction with our DAQ to
acquire data

1 The Matlab script also allows for further
characterization parameters if need be
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Behavioral Testing

1 Measurements that exhibit the behavior of the

ADC:
L] The time it takes for an output code to arrive given a
particular input

[l The rate at which the design is capable of operating

1 Power consumption of the ADC

1 These values help us ensure the design meets
original requirements
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Next Semester and Lessons
Learned

m Two members of the team who will be here next
semester will carry out testing of the fabricated
chip

m Once the device is returned from fabrication will
need to be packaged, currently looking at a ZIF
(zero insertion force) package

m A PCB will be used for testing the device with
direct test points and proper input signals.

m Transitioning from one process to another is a
valuable skill to use in industry



Thank
you!

Caroline Alva
Tyler Archer
Caleb Davidson
Mahmoud Gshash
Josh Rolles
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Final Layout of 180nm
Design
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Modulator Layout
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Clock outputs
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Temperature sSensor Output
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Integrator Output
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Dynamic Comparator
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Counter-based
Decimator Verilog

&

en all the other modules

module main(Vin,r,clkl,clk2,clk3,parout)
parameter reaVal = 10 :
input Vin:

input r;

12 input clkl,clk2,clk3;
output reg 0] parout;
reg resCnt;
reg [2:0] regin;

Teg countr;
wire [29:0] regout, bookoutl, bookout2:

ile
%.' /modified from 281 textbook

MR Ry
woR

module updowncount (Clock, L, E, up down, Q)7
% //paramet :
//input ] Rs
input Clock, L, E, up down;
output [9:0] Q:
reg [29:0]1 Q:
integer direction;
always @ (posedge Clock)
begin
if (up_down)

fztart the actual connection of the various components for the main top mod

Register regl(.reset(r), .resCnt(~resCnt), .clk(clk3d), .indata(regin), .outdata(regout)); direction <= 1:
else
updowneount bookecountl {.Clock(clkl), .L{countr), .E(Vin), .up down({l'kl), .Q(bookoutl)}): direction <= -1:
- if (I1L)
updowncount bookcount2 (.Clock(clk2), .L{countr), .E(1'bl}, .up down(l'bl), .Q(boockoutl)): -

Q <= 10
else if (E)
Q <= Q + direction’

always @(*) begin

68 countr <= resCnt & r; end

1] end endmodule

70 always @ (posedge clk3) begin = Recister. v

71 if(bookout2 = 10'BIIliliiiil ) begin module Register(reset, resCnt, clk, indata, outdata):
72 resCnt <= 1'b0; input reset, clk, resCnt;

T3 end input [2:0] indata:

T4 else begin output reg [Z:0] ocutdata;

_: resCot <= 1'bl; always @ (posedge clk) begin

6 end

if('reset)

outdata <= 10'b0000000000;
else if (resCnt)

outdata <= indata;

regin <= bookoutl;
parout <= regout;

end

endmodule end

endmodule



Counter-based Decimator Schematic




Counter-based Decimator Verilog Layout




Initial Decimator Design Strategies

- Researched the theory and FIR filter structure that generally
constructs the low pass and decimation filtration.

- Initial thought process was to build a design centered around
summating impulse responses of the input signal, but this was
soon found to be not an effective or efficient path to take.

- The Sinc filter of orders 1, 3, and 5 were considered as their
frequency response fits the characteristics of the theory behind
the decimator filter. Sinc filter of order 1 was considered due to
its lessened difficulty to implement where we did not need the
added complexity of orders 3 or 5.

- Even further the complexity of a Sinc order 1 filter proved to be
more than needed in our output, and in order to design
efficiently we chose a simpler counter-based structure for
decimation. This provides less noise shaping effects than other
structures.



Decimator Unit Testing

Tested output when 50%, 75%, and 25% duty cycles.
All outputs matched the input from an ideal input
voltage, and for multiple output codes given the
same input cycle.

Tested high-frequency input with a 50% on, 50% off
system, but where on is for one clock cycle and off
Is for one clock cycle.

Modulator integration was tested with a full
modulator input data. This led to accurate results
with each of the above test cases for multiple
output codes.



How the Decimator Integrates into the Design

Integrator
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The Sigma component of the
delta-sigma architecture is our
10-bit counter reading values
from the modulator.

Another counter acts as our
summing interval.

The register acts as a buffer
holding one output code per
1024 inputs from the
modulator.



Modulator Diagram

Figure 3. First-order A~ modulator in the time domain
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Overview Level Diagram with Averaging Filter Design

Figure 1. Block diagram of A= ADC

Analog “\u AL
It : Medulator

Sample Rate [[5'!

f5/f}, = Decimation Ratio (DR)

"""""""""""""""""" Data Rate (f};)

]

1

i I

]

f Digital
I

Digital » Decimator ;
Filter Filter Output

L

Digital/Decimation Filter

o o o o

Iput Delay Delay -===—- —— Dolay

............ Output




Sinc 39 Order Example Filter Design
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