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Problem and Intended Use 
◼Problem
◼ Design a Delta-Sigma Analog to Digital Converter 

that reads an analog signal from an on-chip 
temperature sensor and converts it into a digital 
output 

◼Used in many circuits
◼ Physical data is normally characterized as an 

analog signal, converting it to a digital signal 
allows the signal to be easily manipulated 

◼ Normally at the front end of most digital circuits
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Analog to Digital Converters

◼ ADCs allow electronics to interact with the 
analog world around us

◼ Nyquist Rate ADCs
◼ Samples the input signal at the Nyquist Rate 
◼ Successive approximation 
◼ Flash

◼ Oversampling ADCs
◼ Samples the input signal at a frequency 

significantly higher that the Nyquist rate 
◼ Delta Sigma 
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Why Delta Sigma

◼ Oversampling 
◼ Higher oversampling ratio leads to higher signal 

to noise ratio
◼ Higher oversampling ratio leads to higher 

resolution 

◼ Linear System
◼ Linearity depends on a 1-bit DAC 
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Requirements and User 
Interface
◼Requirements 
◼ Functional
◼ Temperature range of sensor from 10oC to 60oC
◼ New output code every 10ms
◼ 10-bit output 
◼ Designed in TSMC 180nm process

◼ Non-functional
◼ Must fit inside a die of 4mmX4mm

◼ User Interface
◼ IC designers integrate them in IC designs, both in the 

academic world and in industry 
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Delta-Sigma ADC and On-
Chip Temperature Sensor
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Operating Environment and 
Familiarity with tools 
◼Operating Environment 
◼ It can be implemented into any integrated circuit 
◼ There will be a pin out between the modulator and 

the temperature sensor, this will allow us to test any 
analog signal

◼ Familiarity 
◼ Simulations performed in Cadence
◼ All members of our team have taken classes, and 

participated in projects, involving integrated 
circuits and analog VLSI design
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Project Management 
◼ Resources 
◼ Access to:
◼ Cadence 
◼ Fabrication through MOSIS 
◼ TSMC 180nm Process Design Kit (PDK)
◼ Pad Frame compliant with the process
◼ Oven
◼ Electrolytic bath
◼ DAQ (Digital Acquisition) measurement device

◼ Work method: divide work into circuits
◼ Risks

◼ Nobody on team has designed a data 
converter prior to the project

◼ Time and legal constraints involved with 
fabrication
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System 
Design 
Blocks 
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Temperature Sensor

• A diode has a current that is dependent on its temperature
• The sensor takes advantage of this to produce a voltage proportional to the 

chip’s temperature
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Clock

• System clock is produced by a ring oscillator
• This is used to produce 4 clock signals with various phases 

and duty cycles (nominally 100 KHz)
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Modulator 
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• Converts an input voltage to a binary bit stream
• Bit stream’s ratio of ones to zeros is proportional to the input voltage
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Integrator 

• Generates a saw-tooth wave that progresses in a positive or negative direction 
depending on the sign of the input voltage

• The slope of this progression depends on the magnitude of the input voltage
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Dynamic Comparator 

• Converts integrator’s saw-tooth wave to binary bit stream by 
comparing its magnitude with a reference voltage at a clock 
edge
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DAC

• Converts output bit stream to analog signal applied to integrator to 
control the direction of the saw-tooth wave’s progression
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Switched Capacitors 

Non-Inverting Inverting
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• Controls current by incrementally transferring charge using a capacitor 
and clock

• Allows implementation of a large resistor using a small capacitor, saving 
circuit area
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Decimator 

• Converts bit stream from modulator’s output to 10-bit parallel output 
codes by summing every 1024 bits
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180nm 
Test 
Results 
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Overall Results 

The desired output is a 10-bit code on 10 parallel output pins, whose 
magnitude is proportional to the proportion of the input values that are 
high in a 10ms timespan. A new code should be output every 10ms. 
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UMC 65nm 
Design
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Delta-Sigma ADC 65nm 
Design
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65nm Modulator Results
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Final Results
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65nm Modulator Layout
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Final Layout of 65nm Design
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Post-Fabrication Testing
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◼Post-fabrication testing will define the performance 
and characteristics parameters of the ADC

◼Design of a PCB (Printed Circuit Board) has been 
implemented to take data off-chip and create test 
points along the modulator

◼ A DAQ (Data Acquisition) Device from MCC will 
provide us the ability to acquire data from the ADC 
and obtain characteristic data
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Characteristic Testing
◼ The SNR (Signal-to-Noise Ratio), SNDR (Signal-to-

Noise and Distortion Ratio), and ENOB (Effective 
Number of Bits) characterizes the performance of 
the ADC 

◼ These will provide accuracy and characteristic 
information about our device

◼ To test these values we will use a Matlab script to 
post-process in conjunction with our DAQ to 
acquire data

◼ The Matlab script also allows for further 
characterization parameters if need be 
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Behavioral Testing

◼Measurements that exhibit the behavior of the 
ADC:
◼ The time it takes for an output code to arrive given a 

particular input

◼ The rate at which the design is capable of operating

◼ Power consumption of the ADC

◼ These values help us ensure the design meets 
original requirements
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Next Semester and Lessons 
Learned

■ Two members of the team who will be here next 
semester will carry out testing of the fabricated 
chip

■ Once the device is returned from fabrication will 
need to be packaged, currently looking at a ZIF 
(zero insertion force) package

■ A PCB will be used for testing the device with 
direct test points and proper input signals.

■ Transitioning from one process to another is a 
valuable skill to use in industry
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Thank 
you!
Caroline Alva
Tyler Archer
Caleb Davidson
Mahmoud Gshash
Josh Rolles 
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Final Layout of 180nm 
Design
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180nm Modulator Layout

sddec18-20        High Resolution ADC Using Delta-Sigma Architectures 

32



Clock outputs 
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Temperature Sensor Output
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Integrator Output 
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Dynamic Comparator 
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Counter-based 
Decimator Verilog
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Counter-based Decimator Schematic
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Counter-based Decimator Verilog Layout
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Initial Decimator Design Strategies

• Researched the theory and FIR filter structure that generally 
constructs the low pass and decimation filtration.

• Initial thought process was to build a design centered around 
summating impulse responses of the input signal, but this was 
soon found to be not an effective or efficient path to take.

• The Sinc filter of orders 1, 3, and 5 were considered as their 
frequency response fits the characteristics of the theory behind 
the decimator filter.  Sinc filter of order 1 was considered due to 
its lessened difficulty to implement where we did not need the 
added complexity of orders 3 or 5.

• Even further the complexity of a Sinc order 1 filter proved to be 
more than needed in our output, and in order to design 
efficiently we chose a simpler counter-based structure for 
decimation.  This provides less noise shaping effects than other 
structures.
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Decimator Unit Testing

• Tested output when 50%, 75%, and 25% duty cycles.  
All outputs matched the input from an ideal input 
voltage, and for multiple output codes given the 
same input cycle.

• Tested high-frequency input with a 50% on, 50% off 
system, but where on is for one clock cycle and off 
is for one clock cycle.

• Modulator integration was tested with a full 
modulator input data.  This led to accurate results 
with each of the above test cases for multiple 
output codes.
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How the Decimator Integrates into the Design

• The Sigma component of the 
delta-sigma architecture is our 
10-bit counter reading values 
from the modulator.

• Another counter acts as our 
summing interval.

• The register acts as a buffer 
holding one output code per 
1024 inputs from the 
modulator.
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Modulator Diagram
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Overview Level Diagram with Averaging Filter Design
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Sinc 3rd Order Example Filter Design
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